
Title: Applying and Interpreting Object Oriented Metrics
Presenter: Dr. Linda H. Rosenberg
Track: Track 7 - Measures/Metrics
Day: Wednesday
Keywords: Metrics, Object-Oriented

Abstract: Object-oriented design and development is becoming very popular in today's
software development environment. Object oriented development requires not only a different
approach to design and implementation, it requires a different approach to software metrics.
Since object oriented technology uses objects and not algorithms as its fundamental building
blocks, the approach to software metrics for object oriented programs must be different from the
standard metrics set. Some metrics, such as lines of code and cyclomatic complexity, have
become accepted as "standard" for traditional functional/ procedural programs, but for object-
oriented, there are many proposed object oriented metrics in the literature. The question is,
"Which object oriented metrics should a project use, and can any of the traditional metrics be
adapted to the object oriented environment?"

In this paper, the Software Assurance Technology Center (SATC) at NASA Goddard
Space Flight Center discusses its approach to choosing metrics for a project by first identifying
the attributes associated with object oriented development. Within this framework, nine metrics
for object oriented are selected. These metrics include three traditional metrics adapted for an
object oriented environment, and six "new" metrics to evaluate the principle object oriented
structures and concepts. The metrics are first defined, then using a very simplistic object
oriented example, the metrics are applied. Interpretation guidelines are then discussed and data
from NASA projects are used to demonstrate the application of the metrics.

In the experience of the SATC, projects choose the data they collect by default - if the
tool they are using compiles it, the project collects it. The purpose of this paper is to help project
managers choose a comprehensive set of metrics, not by default, but by using a set of metrics
based on attributes and features of object oriented technology.

Applying and Interpreting Object Oriented Metrics

1. INTRODUCTION

Object-oriented design and development are popular concepts in today's software
development environment. They are often heralded as the silver bullet for solving software
problems, while in reality there is no silver bullet; object oriented development has proved its
value for systems that must be maintained and modified. Object oriented software development
requires a different approach from more traditional functional decomposition and data flow
development methods. While the functional and data flow approaches commence by considering
the systems behavior and/or data separately, object oriented analysis approaches the problem by
looking for system entities that combine them. Object oriented analysis and design focuses on

objects as the primary agents involved in a computation; each class of data and related operations
are collected into a single system entity.

This paper will first briefly discuss nine metrics currently being applied by the SATC to
NASA object oriented projects. These include three "traditional" metrics adapted for an object
oriented environment, and six "new" metrics to evaluate the principle object oriented structures
and concepts. The SATC's approach to identifying a set of object oriented metrics was to
identify the primary critical constructs of object oriented design and to select metrics that
evaluate those areas. The metrics focus on internal object structures that reflect the complexity
of each individual entity, such as methods and classes, and on external complexity that measures
the interactions among entities, such as coupling and inheritance. The metrics measure
computational complexity that affects the efficiency of an algorithm and the use of machine
resources, as well as psychological complexity factors that affect the ability of a programmer to
create, comprehend, modify and maintain software.

But as important as the metrics chosen is what the metrics "tell" the developers and
managers about the quality and object oriented structure of the design and code; metrics without
interpretation guidelines are of little value. Metrics for object oriented development is a
relatively new field of study, however, and have not reached maturity. Although some numeric
thresholds are suggested by analysis developers, there is little application data to justify specific
"good" and "bad" ranges. Knowledge and experience of the programmers, managers, researchers
and SATC staff currently serve as the basis for the interpretation guidelines of the metric
analysis presented in this paper. As each metric is defined, guidelines for interpreting the values
are suggested. In many cases, however, to improve one metric means a trade-off with another.

This paper starts with an overview of the metrics recommended by the SATC for object
oriented systems. These metrics include modifications of “traditional” metrics as well as “new”
metrics for specific object oriented structures. Since the object oriented metrics require a cursory
understanding of the object oriented concepts, Section 3 presents a pictorial representation of the
basic object oriented structures and defines the key terms. In Section 5, we discuss the metrics
in-depth. The design for a simple object oriented example is used to demonstrate the metric
calculations. In Section 5, interpretation guidelines are discussed. Then in Section 6 the
applications and interpretations of the metrics are demonstrated using NASA project data.

2. OVERVIEW - OBJECT ORIENTED METRICS

In this paper, the SATC discusses its applied research of object oriented metrics. The
research was done by surveying the literature on object oriented metrics and then applying the
SATC experience in traditional software metrics to select the object oriented metrics that support
the goal of measuring design and code quality. In addition, we required that a metric be feasible
to compute and have a clear relationship to the object oriented structures being measured. At this
time, many object oriented metrics proposed in the literature lack a theoretical basis, while others
have not yet been validated. Some of these metrics are very labor intensive to collect, or are
dependent on the implementation environment. The object oriented metrics applied by the
SATC are computable, can be related to desirable software qualities, and are in the process of
being validated.

The SATC’s approach to identifying a set of object oriented metrics was to focus on the
primary, critical constructs of object oriented design and to select metrics that apply to those
areas. The suggested metrics are supported by most literature and some object oriented tools.
The metrics evaluate the object oriented concepts: methods, classes, coupling, and inheritance.
The metrics focus on internal object structure that reflects the complexity of each individual
entity and on external complexity that measures the interactions among entities. The metrics
measure computational complexity that affects the efficiency of an algorithm and the use of
machine resources, as well as psychological complexity factors that affect the ability of a
programmer to create, comprehend, modify, and maintain software.

We support the use of three traditional metrics and present six additional metrics
specifically for object oriented systems. The SATC has found that there is considerable
disagreement in the field about software quality metrics for object oriented systems [2, 6].
Some researchers and practitioners contend traditional metrics are inappropriate for object
oriented systems. There are valid reasons for applying traditional metrics, however, if it can be
done. The traditional metrics have been widely used, they are well understood by researchers
and practitioners, and their relationships to software quality attributes have been validated [2, 6,
11, 12].

Table 1 presents an overview of the metrics applied by the SATC for object oriented
systems. The SATC supports the continued use of traditional metrics, but within the structures
and confines of object oriented systems. The first three metrics in Table 1 are examples of
traditional metrics applied to the object oriented structure of methods instead of functions or
procedures. The next six metrics are specifically for object oriented systems and the object
oriented construct applicable is indicated.

SOURCE METRIC
OBJECT-ORIENTED
CONSTRUCT

Traditional Cyclomatic complexity (CC) Method
Traditional Lines of Code (LOC) Method
Traditional Comment percentage (CP) Method
NEW Object-Oriented Weighted methods per class (WMC) Class/Method
NEW Object-Oriented Response for a class (RFC) Class/Message
NEW Object-Oriented Lack of cohesion of methods (LCOM) Class/Cohesion
NEW Object-Oriented Coupling between objects (CBO) Coupling
NEW Object-Oriented Depth of inheritance tree (DIT) Inheritance
NEW Object-Oriented Number of children (NOC) Inheritance

Table 1: SATC Metrics for Object Oriented Systems

3. OVERVIEW - OBJECT ORIENTED STRUCTURES

A brief description of object oriented structures is given in this section using the pictorial
description in Figure 1 and the definitions in Table 2.

Attribute Defines the structural properties of classes, unique within a class, generally a noun.
Class A set of objects that share a common structure and common behavior manifested

by a set of methods; the set serves as a template from which object can be
instantiated (created).

Cohesion The degree to which the methods within a class are related to one another.
Coupling Object X is coupled to object Y if and only if X sends a message to Y.
Inheritance A relationship among classes, wherein an object in a class acquires characteristics

from one or more other classes.
Instantiation The process of creating an instance of the object and binding or adding the specific

data.
Message A request that an object makes of another object to perform an operation.
Method An operation upon on object, defined as part of the declaration of a class.
Object An instantiation of some class which is able to save a state (information) and which

offers a number of operations to examine or affect this state.
Operation An action performed by or on an object, available to all instances of class, need not

be unique.

Table 2: Key Object Oriented Terms for Metrics

The new object oriented development methods have their own terminology to reflect the
new structural concepts. Referencing Figure 1, an object oriented system starts by defining a
class (Class A) that contains related or similar attributes and operations (some operations are
methods). The classes are used as the basis for objects (Object A1). A child class inherits all of
the attributes and operations from its parent class, in addition to having its own attributes and
operations. A child class can also become a parent class for other classes, forming another
branch in the hierarchical tree structure. When an object is created to contain data or
information, it is an instantiation of the class. Classes interact or communicate by passing
messages. When a message is passed between two classes, the classes are coupled. These
specific terms are defined in Table 2 [1, 4, 9].

Figure 1: Pictorial Description of Object Oriented Terms

Figure 2 is an example application with 3 classes; the root or main class, Store_dept and
two child classes, Clothing and Appliances. Each department will have a Manager, # Employees
and Floor space; each child class inherits the attributes of Manager, # Employees, Floor Space
from Store_dept. The class Clothing will have additional attributes of Customer Gender, Size
range and Specialty. The class of Appliance Departments will have an attribute of Category.
Specific named departments are objects. Objects of the Class Clothing are the Toddlers
Department and Men's Suits Department. In the Appliances class, the objects are Large
Appliance Department, Small Kitchen Appliances, and the Electronics Department.

Methods are operations done on an object. Examples of what all store departments need
to do are Display merchandise, Give credit, and Exchange merchandise. The Clothing
Department will inherit these methods but also have Dressing rooms. The Appliance
Department will also have Delivery and Install, Service, Parts Ordering and Technical support.

Figure 2: Example Application

4. METRICS FOR OBJECT ORIENTED SYSTEMS

A. Traditional Metrics
There are many metrics that are applied to traditional functional development. The

SATC, from experience, has identified three of these metrics that are applicable to object
oriented development: Complexity, Size, and Readability. To measure the complexity, the
cyclomatic complexity is used.

A.1 METRIC 1: Cyclomatic Complexity (CC)

Store Departments

Manager, # Employees, Floor space

Display , Credit, Exchange

Clothing

Customer gender
Size Range
Specialty

Dressing room

Appliances

Delivery& Install
Service
Parts Ordering
Tech. Support

Toddlers
Dept

Men’s
 Suits

Category

Large
Appliances

Small
 Kitchen Electronics

Class name

Attributes

Methods

KEY:

Object

Cyclomatic complexity (McCabe) is used to evaluate the complexity of an algorithm in a
method. It is a count of the number of test cases that are needed to test the method
comprehensively. The formula for calculating the cyclomatic complexity is the number of edges
minus the number of nodes plus 2. For a sequence where there is only one path, no choices or
option, only one test case is needed. An IF loop however, has two choices, if the condition is
true, one path is tested; if the condition is false, an alternative path is tested. Figure 3 shows

examples of calculations for the cyclomatic complexity for four basic programming structures.
[7]

Figure 3 :Example Calculations Cyclomatic Complexity

A method with a low cyclomatic complexity is generally better. This may imply
decreased testing and increased understandability or that decisions are deferred through message
passing, not that the method is not complex. Cyclomatic complexity cannot be used to measure
the complexity of a class because of inheritance, but the cyclomatic complexity of individual
methods can be combined with other measures to evaluate the complexity of the class. Although
this metric is specifically applicable to the evaluation of Complexity, it also is related to all of the
other attributes [3, 5, 6, 7, 11].

A.2 METRIC 2: Size
Size of a class is used to evaluate the ease of understanding of code by developers and

maintainers. Size can be measured in a variety of ways. These include counting all physical
lines of code, the number of statements, the number of blank lines, and the number of comment
lines. Lines of Code(LOC) counts all lines. Non-comment Non-blank (NCNB) is sometimes
referred to as Source Lines of Code and counts all lines that are not comments and not blanks.
Executable Statements (EXEC) is a count of executable statements regardless of number of
physical lines of code. For example, in FORTRAN and IF statement may be written:

IF X = 3
Then

Number of Independent Test Paths => edges - nodes + 2

y=2

z=3

sequence:
1-2+2=1

 i f
x > 4

yes

then
do this

no

if / then:
3-3+2=2

while

while loop:
3-3+2=2

until

do

until loop:
3-3+2=2

Cyclomatic Complexity

Y = 10
This example would be 3 LOC, 3 NCNB, and 1 EXEC.

Executable statements is the measure least influenced by programmer or language style.
Therefore, since NASA programs are frequently written using multiple languages, the SATC
uses executable statements to evaluate project size. [10]

Thresholds for evaluating the meaning of size measures vary depending on the coding
language used and the complexity of the method. However, since size affects ease of
understanding by the developers and maintainers, classes and methods of large size will always
pose a higher risk. [3, 6; 7, 11]

A.3 METRIC 3: Comment Percentage
The line counts done to compute the Size metric can be expanded to include a count of

the number of comments, both on-line (with code) and stand-alone. The comment percentage is
calculated by the total number of comments divided by the total lines of code less the number of
blank lines. Since comments assist developers and maintainers, higher comment percentages
increase understandability and maintainability. [10]

B. Object-Oriented Specific Metrics
As discussed, many different metrics have been proposed for object oriented systems.

The object oriented metrics that were chosen by the SATC measure principle structures that, if
improperly designed, negatively affect the design and code quality attributes.

The selected object oriented metrics are primarily applied to the concepts of classes,
coupling, and inheritance. Preceding each metric, a brief description of the object oriented
structure is given. For some of the object-oriented metrics discussed here, multiple definitions
are given; researchers and practitioners have not reached a common definition or counting
methodology. In some cases, the counting method for a metric is determined by the software
analysis package being used to collect the metrics.

Recall, a class is a template from which objects can be created. This set of objects shares
a common structure and a common behavior manifested by the set of methods. A method is an
operation upon an object and is defined in the class declaration. A message is a request that an
object makes of another object to perform an operation. The operation executed as a result of
receiving a message is called a method. Cohesion is the degree to which methods within a class
are related to one another and work together to provide well-bounded behavior. Effective object
oriented designs maximize cohesion because cohesion promotes encapsulation. Coupling is a
measure of the strength of association established by a connection from one entity to another.
Classes (objects) are coupled when a message is passed between objects; when methods declared
in one class use methods or attributes of another class. Inheritance is the hierarchical
relationship among classes that enables programmers to reuse previously defined objects
including variables and operators. [2, 3, 5, 8]

Figure 2 is duplicated here as Figure 4 to use as an example application to demonstrate
how these metrics would be calculated.

Figure 4: Object Oriented Application Example

B.1 METRIC 4: Weighted Methods per Class (WMC)
The WMC is a count of the methods implemented within a class or the sum of the

complexities of the methods (method complexity is measured by cyclomatic complexity). The
second measurement is difficult to implement since not all methods are assessable within the
class hierarchy due to inheritance. The number of methods and the complexity of the methods
involved is a predictor of how much time and effort is required to develop and maintain the class.
The larger the number of methods in a class, the greater the potential impact on children;
children inherit all of the methods defined in the parent class. Classes with large numbers of
methods are likely to be more application specific, limiting the possibility of reuse. [2, 6, 7, 8]

Referring to Figure 4, WMC is calculated by counting the number of methods in each class,
therefore:

WMC for Clothing_dept = 1
WMC for Appliance_dept = 4

B.2 METRIC 5: Response for a Class (RFC)
The RFC is the count of the set of all methods that can be invoked in response to a

message to an object of the class or by some method in the class. This includes all methods
accessible within the class hierarchy. This metric looks at the combination of the complexity of
a class through the number of methods and the amount of communication with other classes.
The larger the number of methods that can be invoked from a class through messages, the greater
the complexity of the class. If a large number of methods can be invoked in response to a

Store Departments

Manager, # Employees, Floor space

Display , Credit, Exchange

Clothing

Customer gender
Size Range
Specialty

Dressing room

Appliances

Delivery& Install
Service
Parts Ordering
Tech. Support

Toddlers
Dept

Men’s
 Suits

Category

Large
Appliances

Small
 Kitchen Electronics

Class name

Attributes

Methods

KEY:

Object

message, the testing and debugging of the class becomes complicated since it requires a greater
level of understanding on the part of the tester. A worst case value for possible responses will
assist in the appropriate allocation of testing time. [2, 6, 7, 8]

The RFC for Store_dept in Figure 4 is the number of methods that can be invoked in
response to messages by itself (Store_dept), by Clothing_dept, and by Appliance_dept.
 The RFC for Store_dept = 3 (self) + 1 (Clothing_dept) + 4 (Appliance_dept) = 8

B.3 Metric 6 – Lack of Cohesion (LCOM)
Lack of Cohesion (LCOM) measures the dissimilarity of methods in a class by instance

variable or attributes. A highly cohesive module should stand alone; high cohesion indicates
good class subdivision. Lack of cohesion or low cohesion increases complexity, thereby
increasing the likelihood of errors during the development process. High cohesion implies
simplicity and high reusability. High cohesion indicates good class subdivision. Lack of
cohesion or low cohesion increases complexity, thereby increasing the likelihood of errors
during the development process. Classes with low cohesion could probably be subdivided into
two or more subclasses with increased cohesion. [2, 3, 6; 7, 8] Figure 5 is an alternative program
design for the segment in Figure 4 and useful in demonstrating cohesion.

Figure 5: Alternative Design

In Figure 5, the two child classes of Clothing and Appliances have been eliminated, the
attributes and methods combined into one class Store_dept. Figure 5 shows a design with high
lack of cohesion because there are relatively few common attributes and methods among the
objects. Auto_Parts needs the method Parts_Ordering but not Fragrence_Demonstrations.
Cosmetics needs Fragrence_Demonstrations but not Parts_Ordering. Because the objects have
few methods in common, there is a high lack of cohesion. This implies further abstraction is
needed – similar objects need to be grouped together by creating child classes for them.

B.4 METRIC 7: Coupling Between Object Classes (CBO)
Coupling Between Object Classes (CBO) is a count of the number of other classes to

which a class is coupled. It is measured by counting the number of distinct non-inheritance
related class hierarchies on which a class depends. Excessive coupling is detrimental to modular

Display, Credit, Exchange

Store Departments

Manager, # Employees, Floor space

Auto Parts Cosmetics

Fragrance Demo, Parts Ordering

design and prevents reuse. The more independent a class is, the easier it is reuse in another
application. The larger the number of couples, the higher the sensitivity to changes in other parts
of the design and therefore maintenance is more difficult. Strong coupling complicates a system
since a class is harder to understand, change or correct by itself if it is interrelated with other
classes. Complexity can be reduced by designing systems with the weakest possible coupling
between classes. This improves modularity and promotes encapsulation. [2, 3, 5, 6, 7, 8]

Figure 6 is an exaggerated example of high coupling between objects. Here two
departments are identified as Jackets and Trousers. They both have the same attributes and the
same methods. This implies that the design in Figure 6 is probably not the most efficient design
and these departments should be combined into one class.

Figure 6: Example of Excessive Coupling

B.5 METRIC 8: Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy is the maximum number of steps

from the class node to the root of the tree and is measured by the number of ancestor classes.
The deeper a class is within the hierarchy, the greater the number methods it is likely to inherit
making it more complex to predict its behavior. Deeper trees constitute greater design
complexity, since more methods and classes are involved, but the greater the potential for reuse
of inherited methods. A support metric for DIT is the number of methods inherited (NMI). [2, 3,
6, 7, 8]

In Figure 4, Store_Dept is the root and has a DIT of 0. The DIT for Clothing is 1.

B.6 METRIC 9: Number of Children (NOC)
The number of children is the number of immediate subclasses subordinate to a class in

the hierarchy. It is an indicator of the potential influence a class can have on the design and on
the system. The greater the number of children, the greater the likelihood of improper
abstraction of the parent and may be a case of misuse of subclassing. But the greater the number

Store Departments

Manager, # Employees, Floor space

Display, Credit, Exchange

Jacket
Departments

Customer type
Size Range

Alterations method
Purchasing method

Men’s Suit
Jackets

Men’s Suit
Trousers

Slacks
Departments

Customer type
Size Range

Alterations method
Purchasing method

of children, the greater the reuse since inheritance is a form of reuse. If a class has a large
number of children, it may require more testing of the methods of that class, thus increase the
testing time. [2, 6, 7, 8]

In Figure 4, Store_Dept has an NOC of 2. NOC for Clothing is 0 since it is a terminating
or leaf node in the tree structure.

5. INTERPRETATION GUIDELINES

While it is interesting to propose a set of metrics for object oriented system, the value of
the metrics is in their application to programs – how can they help developers improve the
quality of the programs? While there are many guidelines as to how to interpret the metrics,
there is insufficient statistical data to prove that a value of 8 for one metric is twice as complex
or twice as “bad” as a value of 4. The SATC therefore, proposes interpretation guidelines based
on a comparison of the values, looking at the outliers to determine why they are different from
the other modules of code. This is not an indication of “badness” but an indicator of difference
that needs to be investigated. Table 3 is a summary of the objectives for the values suggested
above in the description of the metrics.

METRIC OBJECTIVE
Cyclomatic Complexity Low
Lines of Code/Executable Statements Low
Comment Percentage ~ 20 – 30 %
Weighted Methods per Class Low
Response for a Class Low
Lack of Cohesion of Methods
 Cohesion of Methods

Low
High

Coupling Between Objects Low
Depth of Inheritance Low (trade-off)
Number of Children Low (trade-off)

Table 3 : Interpretation Guidelines

However, as indicated in the last two metrics, there is a trade-off with many of the
metrics. A high Depth in Tree will increase maintainability complexity but also shows increased
reuse. A high number of children will increase testing efforts but will also accompany increased
the extent of reuse efficiency. A developer must be aware of the relationships of the structures
and that altering the size of one metric can impact areas such as testing, understandability,
maintainability, development effort and reuse. [10]

6. APPLICATION

For some of the metrics, a simple histogram demonstrates prevailing and extreme values.
For the this project in Figure 7, a histogram of Weighted Methods per Class (WMC) reveals that,
while most classes have a WMC of less than 20, there are a few classes with WMC greater than

100. Those few classes with the highest WMC are candidates for inspection and/or revision.
This histogram is also useful for monitoring complexity over time.

Figure 7: Weighted Methods Per Class

There are a few classes in the project shown in Figure 8 that are capable of invoking
more than 200 methods. Classes with large RFC have a greater complexity and decreased
understandability. Testing and debugging are more complicated. This information is useful
when monitored over time also.

Figure 8: Response for a Class

W e i g h t e d M e t h o d s P e r C l a s s

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90
100

110
120

130
140

150
160

170
180

190
200

M
ore

W M C

C

la
ss

es

R F C f o r P r o j e c t X Y Z

0

20

40

60

80

100

120

0 20 40 60 80
100

120
140

160
180

200
220

240
260

280
300

320
340

360
380

400
420

440
460

480
M

ore

R esponse for Class

F
re

qu
en

cy

Figure 9 examines the Coupling Between Objects (CBO). Of the 240 classes in this
project, more than a third are self-contained. Higher CBO indicates classes that may be difficult
to understand, less likely for reuse and more difficult to maintain.

Figure 9: Coupling Between Objects

The metrics for the hierarchical structure, Number of Children (NOC) and Depth in Tree
(DIT) can also be graphically depicted as shown in Figure 10. A class with DIT = 0 is the “root”
of a hierarchy. If it is also a “leaf”, NOC = 0, then it is standalone code that does not benefit
from inheritance or reuse. Almost 66% of this project’s classes are below other classes in the
tree, which indicates a moderate level of reuse. Higher percentages for DIT’s of 2 and 3 would
show a higher degree of reuse, but increased complexity.

Figure 10: Depth in Tree (DIT)

The value of Lack of Cohesion of Methods (LCOM) depends on the number of methods,
so there is a maximum value possible. Figure 11 is a plot of measured LCOM compared to
possible maximums. While there is little experience with the LCOM metric, intuition says that
the smaller actual LCOM is compared to its possible maximum, the better. In Figure 11 we look

Coupl ing Between Objects

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 M o r e

C B O

C

la
ss

es

Depth in Tree

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0 1 2 3 4 5

Depth in Tree

%
 C

la
ss

es

at LCOM to identify the values closest to the line. The SATC also uses the trend line shown in
the graph to make comparisons between projects and between languages.

Figure 11: Lack of Cohesion of Methods

For many of the metrics, it is more effective to analyze the modules using two metrics.
In Figure 12 the methods are plotted based on size and complexity. The SATC has done
extensive applied research to identify the preferred values. The “risk regions” shown indicate
where methods have the potential for poor quality that will effect maintainability, reusability and
readability. (These regions of risk were developed for non object oriented code and are expected
to decrease in size with further research.) The table below the graph summarizes the diagram.

Figure 12: Size to Complexity Comparison

Low Risk areas

4

3 2

1

0

6

5

0

20

40

60

80

100

0 50 100 150 200 250

Executable Statements

E
xt

en
d

ed
 C

yc
lo

m
at

ic
 C

o
m

p
le

xi
ty

Risk 0 Risk 1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 Total

Count 85 7 9 1 0 2 1 105

Percent 81.0% 6.7% 8.6% 1.0% 0.0% 1.9% 1.0% 100.0%

Higher risk due to size and complexity

In Figure 13, Response for a Class is plotted against the number of methods. Points on or
near the “possible” line represent classes that do not invoke outside methods. This indicates to
developers that there are some classes with more than 40 methods that also affect many objects
in other classes. These are prime candidates for walk-throughs and testing.

Figure 13: Number of Methods by Response for Class

As discussed, there is a trade-off when determining the appropriate number of children
and the depth of the tree. Higher DIT’s indicate a trade-off between increased complexity and
increased reuse. Higher NOC’s also indicate reuse, but may require more testing. Figure 14
demonstrates how the two-way view of the data identifies an interesting class – one that is three
steps down form the root and has 40 children.

Figure 14: Hierarchical Evaluation

Response for Class

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

N o . M e t h o d s

R
F

C

NOT POSSIBLE

Depth of Children

0

1

1

2

2

3

3

4

4

5

5

0 10 20 30 40 50 60

Number of Children

D
ep

th
 in

 T
re

e

7. SUMMARY

Object oriented metrics help evaluate the development and testing efforts needed, the
understandability, maintainability and reusability. This information is summarized in Table 4.

Table 4 : Object Oriented Metrics Effects

8. CONCLUSION

Object oriented metrics exist and do provide valuable information to object oriented
developers and project managers. The SATC has found that a combination of “traditional”
metrics and metrics that measure structures unique to object oriented development is most
effective. This allows developers to continue to apply metrics that they are familiar with, such as
complexity and lines of code to a new development environment. However, now that new
concepts and structures are being applied, such inheritance, coupling, cohesion, methods and
classes, metrics are needed to evaluate the effectiveness of their application. Metrics such as
Weighted Methods per Class, Response for a Class, and Lack of Cohesion are applied to these
areas. The application of a hierarchical structure also needs to be evaluated through metrics such
as Depth in Tree and Number of Children.

At this time there are no clear interpretation guidelines for these metrics although there
are guidelines based on common sense and experience.

9. REFERENCES

1. Booch, Grady, Object Oriented Analysis and Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., 1994.

2. Chidamber, Shyam and Kemerer, Chris, “A Metrics Suite for Object Oriented Design”, IEEE
Transactions on Software Engineering, June, 1994, pp. 476-492.

3. Hudli, R., Hoskins, C., Hudli, A., “Software Metrics for Object Oriented Designs”, IEEE,
1994.

4. Jacobson, Ivar, Object Oriented Software Engineering, A Use Case Driven Approach,
Addison-Wesley Publishing Company, 1993.

5. Lee, Y., Liang, B., Wang, F., “Some Complexity Metrics for Object Oriented Programs
Based on Information Flow”, Proceedings: CompEuro, March, 1993, pp. 302-310.

Metrics Objective Testing
Efforts

Understan
-dability

Maintain
-ability

Develop
Effort

Reuse

Complexity ↓ ↓ ↑ ↑
Size (LOC) ↓ ↓ ↑ ↑
Comment % ↑ ↓ ↑ ↑ ↓
WMC ↓ ↑ ↓ ↑
RFC ↓ ↓ ↑
LCOM ↓ ↑ ↑ ↓ ↑
CBO ↓ ↓ ↑ ↑ ↑

6. Lorenz, Mark and Kidd, Jeff, Object Oriented Software Metrics, Prentice Hall Publishing,
1994.

7. McCabe & Associates, McCabe Object Oriented Tool User’s Instructions, 1994.
8. Rosenberg, Linda H., “Metrics for Object Oriented Environments”, EFAITP/AIE Third

Annual Software Metrics Conference, December, 97.
9. Sommerville, Ian, Software Engineering, Addison-Wesley Publishing Company, 1992.
10. Sharble, Robert, and Cohen, Samuel, “The Object Oriented Brewery: A Comparison of Two

object oriented Development Methods”, Software Engineering Notes, Vol 18, No 2., April
1993, pp 60 -73.

11. Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of Traditional Software Metrics for
Object Oriented Systems”, Proceedings: 25th Hawaii International Conference on System
Sciences, January, 1992, pp. 359-368.

12. Williams, John D., “Metrics for Object Oriented Projects”, Proceedings: ObjectExpoEuro
Conference, July, 1993, pp. 13-18.

10. BIOGRAPHIES

Linda H. Rosenberg, Ph.D.

Dr. Rosenberg is an Engineering Section Head at Unisys Government Systems in
Lanham, MD. She is contracted to manage the Software Assurance Technology Center (SATC)
through the System Reliability and Safety Office in the Flight Assurance Division at Goddard
Space Flight Center, NASA, in Greenbelt, MD. The SATC has four primary responsibilities:
Metrics, Standards and Guidance, Assurance tools and techniques, and Outreach programs.
Although she oversees all work areas of the SATC, Dr. Rosenberg's area of expertise is metrics.
She is responsible for overseeing metric programs to establish a basis for numerical guidelines
and standards for software developed at NASA, and to work with project managers to use
metrics in the evaluation of the quality of their software. Dr. Rosenberg’s work in software
metrics outside of NASA includes work with the Joint Logistics Command’s efforts to establish
a core set of process, product and system metrics with guidelines published in the Practical
Software Measurement. In addition, Dr. Rosenberg worked with the Software Engineering
Institute to develop a risk management course. She is now responsible for risk management
training at all NASA centers, and the initiation of software risk management at NASA Goddard.
As part of the SATC outreach program, Dr. Rosenberg has presented metrics/quality assurance
papers and tutorials at GSFC, and IEEE and ACM local and international conferences. She also
reviews for ACM, IEEE and military conferences and journals.

Immediately prior to this assignment, Dr. Rosenberg was an Assistant Professor in the
Mathematics/Computer Science Department at Goucher College in Towson, MD. Her
responsibilities included the development of upper level computer science courses in accordance
with the recommendations of the ACM/IEEE-CS Joint Curriculum Task Force, and the advisor
for computer science majors.

Dr. Rosenberg's work has encompassed many areas of Software Engineering. In addition
to metrics, she has worked in the areas of hypertext, specification languages, and user interfaces.
Dr. Rosenberg holds a Ph.D. in Computer Science from the University of Maryland, an M.E.S. in

Computer Science from Loyola College, and a B.S. in Mathematics from Towson State
University. She is a member of Electrical and Electronic Engineers (IEEE), the IEEE Computer
Society, the Association for Computing Machinery (ACM) and Upsilon Pi Epsilon.

Dr. Linda Rosenberg
GSFC

Code 300.1, Bld 6
Greenbelt, MD 20771
301-286-0087 (voice)

linda.rosenberg@gsfc.nasa.gov

Larry Hyatt

Mr. Larry Hyatt is retired from the Systems Reliability and Safety Office at NASA’s
Goddard Space Flight Center where he was responsible for the development of software
implementation policy and requirements. He founded and led the Software Assurance
Technology Center, which is dedicated to making measured improvements in software
developed for GSFC and NASA.

Mr. Hyatt has over 35 years experience in software development and assurance, 25 with
the government at GSFC and at NOAA. Early in his career, while with IBM Federal Systems
Division, he managed the contract support staff that developed science data analysis software for
GSFC space scientists. He then moved to GSFC, where he was responsible for the installation
and management of the first large scale IBM System 360 at GSFC. At NOAA, he was awarded
the Department of Commerce Silver Medal for his management of the development of the
science ground system for the first TIROS-N Spacecraft. He then headed the Satellite Service
Applications Division, which developed and implemented new uses for meteorological satellite
data in weather forecasting. Moving back to NASA/GSFC, Mr. Hyatt developed GSFC’s initial
programs and policies in software assurance and was active in the development of similar
programs for wider agency use. For this he was awarded the NASA Exceptional Service Medal
in 1990.

He founded the SATC in 1992 as a center of excellence in software assurance. The
SATC carries on a program of research and development in software assurance, develops
software assurance guidance and standards, and assists GSFC and NASA software development
projects and organizations in improving software processes and products.

